Sparse Gaussian Elimination on High Performance

نویسندگان

  • Xiaoye S. Li
  • Katherine A. Yelick
  • John R. Gilbert
  • Phillip Colella
  • James W. Demmel
چکیده

Sparse Gaussian Elimination on High Performance Computers

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Gaussian Elimination on High Performance Computers

Sparse Gaussian Elimination on High Performance Computers

متن کامل

Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping Abstract Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping

Sparse Gaussian elimination with partial pivoting is a fundamental algorithm for many scientiic and engineering applications, but it is still an open problem to develop a time and space eecient algorithm on distributed memory machines. In this thesis, we present an asynchronous algorithm which incorporates static symbolic factorization, nonsymmetric L/U supernode partitioning and supern-ode ama...

متن کامل

Threshold-pivoting in parallel Gaussian elimination for improved efficiency

The use of threshold pivoting with the purpose to reduce fill-in during sparse Gaussian elimination has been generally acknowledged. Here we describe the application of threshold pivoting in dense Gaussian elimination for improving the performance of a parallel implementation. We discuss the effect on the numerical stability and conclude that the consequences are only of minor importance as lon...

متن کامل

Efficient Sparse LU Factorization with Partial Pivoting on Distributed Memory Architectures

A sparse LU factorization based on Gaussian elimination with partial pivoting (GEPP) is important to many scientific applications, but it is still an open problem to develop a high performance GEPP code on distributed memory machines. The main difficulty is that partial pivoting operations dynamically change computation and nonzero fill-in structures during the elimination process. This paper p...

متن کامل

Eecient Sparse Lu Factorization with Partial Pivoting on Distributed Memory Architectures

A sparse LU factorization based on Gaussian elimination with partial pivoting (GEPP) is important to many scientiic applications, but it is still an open problem to develop a high performance GEPP code on distributed memory machines. The main diiculty is that partial pivoting operations dynamically change computation and nonzero ll-in structures during the elimination process. This paper presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996